Reading Group: Probability With Martingales Ch12

LEUNG Man Fung, Heman Summer 2020

Martingales bounded in \mathcal{L}^2

Introduction

- Boundedness of a martingale is important for checking convergence
 - Yet boundedness in \mathcal{L}^1 can be difficult to check
 - Boundedness in \mathcal{L}^1 : $\sup_n E(|M_n|) < \infty$
 - What is the difference between boundedness in \mathcal{L}^1 and integrability $E(|M_n|) < \infty, orall n$?
- · A martingale M bounded in \mathcal{L}^2 is also bounded in \mathcal{L}^1
 - Easier to check boundedness in \mathcal{L}^2 due to a Pythagorean formula

$$E(M_n^2) = E(M_0^2) + \sum_{k=1}^n E\left[(M_k - M_{k-1})^2
ight]$$

- This chapter also presents neat proofs of:
 - Three-Series Theorem
 - Strong Law of Large Numbers
 - Lévy's extension of the Borel-Cantelli Lemmas

Martingales in \mathcal{L}^2 : orthogonal increments

- ' Let $M=\{M_n\}_{n\geq 0}$ be a martingale in \mathcal{L}^2 so that $E(M_n^2)<\infty, orall n$
- $\cdot \,$ By martingale property, for positive integers $s \leq t \leq u \leq v$, we have

$$E(M_v|\mathcal{F}_u)=M_u\quad (a.\,s.\,)$$

• This implies the future increment M_v-M_u is orthogonal to the present information $\mathcal{L}^2(\mathcal{F}_u)$, so

$$\langle M_t - M_s, M_v - M_u
angle = 0$$

- Future increment is also orthogonal to the past increment since $M_t-M_s\in\mathcal{L}^2(\mathcal{F}_u)$
- Hence it is possible to express M_n by sum of orthogonal increments:

$$M_n = M_0 + \sum_{k=1}^n (M_k - M_{k-1})$$

Pythagoras's theorem yields (since expectation of cross term vanishes)

$$E(M_n^2) = E(M_0^2) + \sum_{k=1}^n E\left[(M_k - M_{k-1})^2
ight]$$

Boundedness in \mathcal{L}^2 : sum of increments square

- Theorem 12.1.1 (numbered by order in the section):
 - Let M be a martingale for which $M_n \in \mathcal{L}^2, orall n$
 - Then M is bounded in \mathcal{L}^2 if and only if $\sum E\left[(M_k-M_{k-1})^2
 ight]<\infty$
 - And when this obtains, $M_n o M_\infty$ almost surely and in \mathcal{L}^2
 - Note: William implicitly assumed the martingale was indexed in discrete time by using k-1
 - However I think this theorem also holds for continuous time
- · Proof of $\sup_n E(M_n^2) < \infty \iff \sum E\left[(M_k M_{k-1})^2\right] < \infty$
 - Use the Pythagorean formula

$$E(M_n^2) = E(M_0^2) + \sum_{k=1}^n E\left[(M_k - M_{k-1})^2
ight]$$

- Note: $E(M_0^2)$ is unbounded implies $E\left[(M_1-M_0)^2
 ight]$ and $E(M_n^2)$ are also unbounded
- So the theorem is safe even if there is no ${\cal E}(M_0^2)$ explicitly

- · Proof of $M_n o M_\infty$ almost surely and in \mathcal{L}^2
 - Suppose that M is bounded in \mathcal{L}^2
 - By monotonicity of norms, M is also bounded in \mathcal{L}^1
 - [–] Apply Doob's convergence theorem, we have $M_n \stackrel{a.s.}{
 ightarrow} M_\infty$
 - The Pythagorean formula implies that $E\left[(M_{n+r}-M_n)^2
 ight]=\sum_{k=n+1}^{n+r}E\left[(M_k-M_{k-1})^2
 ight]$
 - When $r o\infty$, Fatou's lemma yields $E\left[(M_\infty-M_n)^2
 ight]\leq \sum_{k\geq n+1}E\left[(M_k-M_{k-1})^2
 ight]$

- Hence
$$\lim_n E\left[(M_\infty-M_n)^2
ight]=0$$
, i.e. $M_n\stackrel{\mathcal{L}^2}{ o} M_\infty$

- Intuition: when $n
ightarrow \infty$, there is no more increment on RHS

Sum of independent random variables in \mathcal{L}^2

Sum of independent zero-mean RVs in \mathcal{L}^2

- Theorem 12.2.1:
 - Suppose that $\{X_k\}_{k\in\mathbb{N}}$ is a sequence of independent RVs with zero-mean and finite variance σ_k^2
 - Then $\sum \sigma_k^2 < \infty \implies \sum X_k$ converges almost surely
 - Further if X_k is bounded by some positive constant K, then the reverse direction is also true
 - i.e. $\sum X_k$ converges almost surely $\implies \sum \sigma_k^2 < \infty$
- Notation: define
 - Natural filtration: $\mathcal{F}_n := \sigma(X_1, X_2, \dots, X_n)$ where $\mathcal{F}_0 := \{ arnothing, \Omega \}$
 - Partial sum: $M_n:=\sum_{k=1}^n X_k$ where $M_0:=0$
 - $A_n:=\sum_{k=1}^n\sigma_k^2$ where $A_0:=0$
 - $N_n:=M_n^2-A_n$ where $N_0:=0$

- $\cdot \;$ Proof of $\sum \sigma_k^2 < \infty \; \Longrightarrow \; \sum X_k$ converges almost surely
 - From example in 10.4, M is a martingale
 - Using the Pythagorean formula,

$$E(M_n^2) = \sum_{k=1}^n E\left[(M_k - M_{k-1})^2\right] = \sum_{k=1}^n E(X_k^2) = \sum_{k=1}^n \sigma_k^2 = A_n$$

- If $\sum \sigma_k^2 < \infty$, then M is bounded in \mathcal{L}^2 and M_n converges almost surely by theorem 12.1.1

- $\cdot \;$ Proof of $\sum X_k$ converges almost surely $\implies \; \sum \sigma_k^2 < \infty$
 - Since $X_k\perp \mathcal{F}_{k-1}$, we have, almost surely

$$E\left[(M_k-M_{k-1})^2|\mathcal{F}_{k-1}
ight]=E[X_k^2|\mathcal{F}_{k-1}]=E(X_k^2)=\sigma_k^2$$

- Similarly, since M_{k-1} is \mathcal{F}_{k-1} measurable, we can expand $(M_k-M_{k-1})^2$, almost surely

$$\sigma_k^2 = E(M_k^2|\mathcal{F}_{k-1}) - 2M_{k-1}E(M_k|\mathcal{F}_{k-1}) + M_{k-1}^2 = E(M_k^2|\mathcal{F}_{k-1}) - M_{k-1}^2$$

- But this implies that N is a martingale (Recall $N_n:=M_n^2-A_n$)
- Now let $c\in (0,\infty)$ and $T:=\inf\{r:|M_r|>c\}$
- Since stopped martingale is also a martingale, $E(N_n^T)=E\left[(M_n^T)^2
 ight]-E(A_{T\wedge n})=0$
- By the further condition, we have $|M_T M_{T-1}| = |X_T| \leq K$ if $T < \infty$
- Hence $E(A_{T\wedge n})=E\left[(M_n^T)^2
 ight]\leq (K+c)^2, orall n$
 - Intuition: same as upcrossing with last increment bounded by $oldsymbol{K}$
- However, since $\sum X_k$ converges a.s., the partial sums are a.s. bounded
- So it must be the case that $P(T=\infty)>0$ for some c and $A_\infty:=\sum \sigma_k^2 <\infty$

Random signs

- · Let $\{a_n\}$ be a sequence of real numbers and $\{\epsilon_n\}$ be a sequence of iid Rademacher RVs
 - Rademacher distribution: $P(\epsilon_n=\pm 1)=0.5$
 - Frequently appear in statistical learning theory
- Theorem 12.2.1 tells us that $\sum \epsilon_n a_n$ converges a.s. $\iff \sum a_n^2 < \infty$
 - And $\sum \epsilon_n a_n$ oscillates infinitely if $\sum a_n^2 = \infty$
- Sketch
 - Note that $Var(\epsilon_k a_k) = a_k^2$ and $|\epsilon_k a_k| \leq \sup_n a_n$, theorem 12.2.1 will yield the first part
 - $\, \sup_n a_n < \infty$ because we are given $\sum a_n^2 = \infty$
 - For the second part, my guess is since $\sum a_n^2 = \infty$, $\sum \epsilon_n a_n$ will not converge
 - However, as ϵ_n are Rademacher RVs, $\sum \epsilon_n a_n$ will oscillate depending on the realization

Symmetrization: expanding the sample space

- What if the mean of RVs is non-zero?
- Lemma 12.4.1
 - Suppose $\{X_n\}$ is a sequence of independent RVs bounded by a constant $K\in[0,\infty)$
 - Then $\sum X_n$ converges a.s. implies that $\sum E(X_n)$ converges and $\sum Var(X_n) < \infty$
- Proof
 - If $E(X_n) = 0, orall n$, then this reduce to theorem 12.2.1
 - Otherwise we need to replace each X_n by a "symmetrized version" Z_n^st of mean 0
 - Let $ig(ilde{\Omega}, ilde{\mathcal{F}}, ilde{\mathbb{P}},(ilde{X}_n:n\in\mathbb{N})ig)$ be an exact copy of $ig(\Omega,\mathcal{F},\mathbb{P},(X_n:n\in\mathbb{N})ig)$
 - Define a richer probability space $\left(\Omega^*,\mathcal{F}^*,\mathbb{P}^*
 ight):=\left(\Omega,\mathcal{F},\mathbb{P}
 ight) imes\left(ilde\Omega, ilde\mathcal{F}, ilde\mathbb{P}
 ight)$
 - For $\omega^* = (\omega, ilde{\omega}) \in \Omega$, define

$$X_n^*(\omega^*):=X_n(\omega), ilde{X}_n^*(\omega^*):= ilde{X}_n(ilde{\omega}), Z_n^*(\omega^*):=X_n^*(\omega^*)- ilde{X}_n^*(\omega^*)$$

- Intuition: X_n^* is X_n lifted to the richer probability space

- Proof (continue)
 - It is clear that the combined family $(X_n:n\in\mathbb{N})\cup(ilde{X}_n:n\in\mathbb{N})$ is on $igl(\Omega^*,\mathcal{F}^*,\mathbb{P}^*igr)$
 - This may be proved by the uniqueness lemma in 1.6
 - Both $X_n^*, ilde X_n^*$ having the same \mathbb{P}^* -distribution as the \mathbb{P} -distribution of X_n

$$\mathbb{P}^* \circ (X_n^*)^{-1} = \mathbb{P} \circ X_n^{-1} ext{ on } (\mathbb{R}, \mathcal{B}), ext{etc.}$$

- Now $(Z_n^*:n\in\mathbb{N}^*)$ is a zero-mean sequence of independent RVs on $ig(\Omega^*,\mathcal{F}^*,\mathbb{P}^*ig)$
- We have $|Z_n^*(\omega^*)| \leq 2K, orall n, orall \omega^*$ and $Var(Z_n^*) = 2\sigma_n^2$ where $\sigma_n^2 := Var(X_n)$
 - This is probably due to independence of original RV and its copy
- Let $G:=\{\omega\in\Omega:\sum X_n(\omega) ext{ converges}\}$ with $ilde{G}$ defined similarly

- Since
$$\mathbb{P}(G) = ilde{\mathbb{P}}(ilde{G}) = 1$$
 , $\mathbb{P}^*(G imes ilde{G}) = 1$

- But $\sum Z_n^*(\omega^*)$ also converges on G imes ilde G, which means $\mathbb{P}^*(\sum Z_n^* ext{ converges})=1$
- As Z_n^* converges a.s., is zero-mean and bounded, theorem 12.2.1 yields $\sum \sigma_n^2 < \infty$
- It also follows that $\sum [X_n E(X_n)]$ and $\sum E(X_n)$ converges a.s.

Some lemmas on real numbers

Cesàro's lemma

- Alternative version of Stolz-Cesàro theorem
- \cdot Suppose that $\{b_n\}$ is a sequence of strictly positive real numbers with $b_0:=0$ and $b_n\uparrow\infty$
- $\cdot \ \{v_n\}$ is a convergent sequence of real numbers with $v_n o v_\infty \in \mathbb{R}$
- \cdot Then we have $\lim_{n o\infty}rac{1}{b_n}\sum_{k=1}^n(b_k-b_{k-1})v_k=v_\infty$
- $\cdot \;$ Proof: let $\epsilon > 0.$ Choose N s.t. $v_k > v_\infty \epsilon$ whenever $k \geq N.$ Then

$$egin{aligned} \liminf_{n o \infty} rac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) v_k \geq \liminf_{n o \infty} \left[rac{1}{b_n} \sum_{k=1}^N (b_k - b_{k-1}) v_k + rac{b_n - b_N}{b_n} (v_\infty - \epsilon)
ight] \ &\geq 0 + v_\infty - \epsilon \end{aligned}$$

- $\cdot \,$ Since this is true for every $\epsilon > 0$, we have $\liminf \geq v_\infty$
- $\cdot\,\,$ By a similar argument, we have $\limsup \leq v_\infty\,$ and the result follows

Kronecker's lemma

- · Suppose that $\{b_n\}$ is a sequence of strictly positive real numbers with $b_n\uparrow\infty$
- $\cdot \ \{x_n\}$ is a sequence of real numbers and define $s_n := \sum_{i=1}^n x_i$
- \cdot Then we have $\sum rac{x_n}{b_n}$ converges $\implies rac{s_n}{b_n} o 0$
- \cdot Proof: let $u_n:=\sum_{k\leq n}rac{x_k}{b_k}$ so that $u_\infty:=\lim_{n
 ightarrow\infty}u_n$ exists
- $\cdot \;$ Then $u_n u_{n-1} = rac{x_n}{b_n}$. Thus by rearrangement

$$s_n = \sum_{k=1}^n b_k (u_k - u_{k-1}) = b_n u_n - \sum_{k=1}^n (b_k - b_{k-1}) u_{k-1}$$

- · Applying Cesàro's lemma, we have $rac{s_n}{b_n} o u_\infty u_\infty = 0$
- · Alternative version: $\sum x_n$ exists and is finite $\implies \lim_{n o \infty} rac{1}{b_n} \sum_{k=1}^n b_k x_k = 0$
 - Check the little o of a weighted sum with monotonically increasing weights

Some neat proofs of classical theorems

Kolmogorov's Three-Series Theorem

- · Let $\{X_n\}$ be a sequence of independent RVs
- \cdot Then $\sum X_n$ converges a.s. iff for some (then for every) K>0 , the following 3 properties hold:
 - $\sum_n P(|X_n| > K) < \infty$
 - $\sum_n E(X_n^K)$ converges
 - $\sum_n Var(X_n^K) < \infty$ where

$$X_n^K(\omega) := egin{cases} X_n(\omega) & , |X_n(\omega)| \leq K \ 0 & , |X_n(\omega)| > K \end{cases}$$

- Proof of "only if" part
 - Suppose that $\sum X_n$ converges a.s. and K is any constant in $(0,\infty)$
 - Since $X_n o 0$ a.s. whence $|X_n| > K$ for only finitely many n, BC2 shows the first property holds
 - BC2: $\sum P(|X_n| > K) = \infty \implies P(|X_n| > K, \text{ i.o.}) = 1$
 - Contraposition: $P(|X_n| > K, ext{ i.o.}) = 0 \implies \sum P(|X_n| > K) < \infty$
 - Since (a.s.) $X_n = X_n^K$ for all but finitely many n, $\sum X_n^K$ also converges a.s.
 - Applying lemma 12.4.1 yields the other two properties

• Proof of "if" part

- Suppose that for some K>0 the 3 properties hold
- Then $\sum P(X_n
 eq X_n^K) = \sum P(|X_n| > K) < \infty$ by construction and property 1
- Applying BC1 yields $P(X_n = X_n^K \text{ for all but finitely many } n) = 1$
- So we only need to check $\sum X_n^K$ converges a.s.
- By property 2, we can check if $\sum \left[X_n^K E(X_n^K)
 ight]$ converges a.s. instead
- Now note that $Y_n^K := X_n^K E(X_n^K)$ is a zero-mean RV with $E\left[(Y_n^K)^2\right] = Var(X_n^K)$
- By property 3, the result follows from theorem 12.2.1

A Strong Law under variance constraints

- Lemma 12.8.1
 - ⁻ Let $\{W_n\}$ be a sequence of independent RVs with $E(W_n)=0, \sum rac{Var(W_n)}{n^2}<\infty$
 - ${}^{ here}$ Then $rac{1}{n}\sum_{k\leq n}W_k\stackrel{a.s.}{
 ightarrow} 0$
- \cdot Proof
 - By Kronecker's lemma, it suffices to prove that $\sum \frac{W_n}{n}$ converges
 - ⁻ However $E\left(rac{W_n}{n}
 ight)=0, \sum Var\left(rac{W_n}{n}
 ight)=\sum rac{Var(W_n)}{n^2}<\infty$
 - So by theorem 12.2.1, the statement is proved

Kolmogorov's Truncation Lemma

- \cdot Suppose that X_1, X_2, \ldots are iid RVs with the same distribution as X where $E(|X|) < \infty$
- \cdot Define

$$\mu:=E(X),Y_n:=egin{cases} X_n &, |X_n|\leq n\ 0 &, |X_n|>n \end{cases}$$

- \cdot Then
 - $E(Y_n)
 ightarrow \mu$
 - $P(Y_n = X_n \text{ eventually}) = 1$
 - $\sum rac{Var(Y_n)}{n^2} < \infty$

 $\cdot \;$ Proof of $E(Y_n)
ightarrow \mu$

- Let

$$Z_n := egin{cases} X &, |X| \leq n \ 0 &, |X| > n \end{cases}$$

Then $Z_n \stackrel{d}{=} Y_n$ and $E(Z_n) = E(Y_n)$

- When $n o \infty$, we have $Z_n o X, |Z_n| \le |X|$
- Applying dominated convergence theorem (note that X is integrable by assumption):

$$\lim_{n o\infty} E(Y_n) = \lim_{n o\infty} E(Z_n) = E(X) = \mu$$

- $\cdot \;$ Proof of $P(Y_n = X_n \; ext{eventually}) = 1$
 - Note that

$$egin{aligned} &\sum_{n=1}^\infty P(Y_n
eq X_n) = \sum_{n=1}^\infty P(|X_n|>n) = \sum_{n=1}^\infty P(|X|>n) \ &= E\left(\sum_{n=1}^\infty I_{|X|>n}
ight) = E\left(\sum_{1\leq n<|X|}1
ight) \ &\leq E(|X|) < \infty \end{aligned}$$

- By BC1, $P(Y_n
eq X_n, ext{ i.o}) = 0$. In other words, $P(Y_n = X_n, ext{ e.v.}) = 1$

Proof of
$$\sum rac{Var(Y_n)}{n^2} < \infty$$

- We have

•

$$\sum rac{Var(Y_n)}{n^2} \leq \sum rac{E(Y_n^2)}{n^2} = \sum_n rac{E(|X|^2;|X| \leq n)}{n^2} = E\left[|X|^2 f(|X|)
ight]$$

- where
$$f(z) = \sum_{n \geq \max(1,z)} rac{1}{n^2}, 0 < z < \infty$$

- Note that, for $n\geq 1$, $rac{1}{n^2}\leq rac{2}{n(n+1)}=2\left(rac{1}{n}-rac{1}{n+1}
 ight)$
- Hence $f(z) \leq rac{2}{\max(1,z)}$ by telescoping
- $\bar{}$ We have $\sum rac{Var(Y_n)}{n^2} \leq 2E(|X|) < \infty$

Kolmogorov's Strong Law of Large Numbers

 \cdot Let X_1, X_2, \ldots be iid RVs with $E(|X_k|) < \infty, orall k$. Define $S_n := \sum_{k=1}^n X_k$ and $\mu := E(X_k), orall k$

' Then $rac{1}{n}S_n \stackrel{a.s.}{
ightarrow} \mu$

- Proof
 - Define Y_n as in Kolmogorov's Truncation Lemma
 - By $P(Y_n=X_n, ext{ e.v.})=1$, it suffices to show that $rac{1}{n}\sum_{k=1}^n Y_k \stackrel{a.s.}{ o} \mu$
 - Define $W_k := Y_k E(Y_k)$. Note that

$$rac{1}{n}\sum_{k=1}^n Y_k = rac{1}{n}\sum_{k=1}^n E(Y_k) + rac{1}{n}\sum_{k=1}^n W_k$$

- The first term $rac{1}{n}\sum_{k=1}^n E(Y_k) o \mu$ by $E(Y_n) o \mu$ and Cesàro's lemma (let $b_n:=n$)
- ⁻ The second term $rac{1}{n}\sum_{k=1}^n W_k \stackrel{a.s.}{ o} 0$ by $\sum rac{Var(Y_n)}{n^2} < \infty$ and lemma 12.8.1

Some remarks on SLLN

- · Philosophy
 - SLLN gives a precise formulation of E(X) as "the mean of a large number of independent realizations of X"
 - Long run guarantee of frequentist method
 - ⁻ From exercise E4.6, it can be shown that if $E(|X|) = \infty$, then $\limsup \frac{S_n}{n} = \infty$ almost surely
 - Hence SLLN is the best possible result for iid RVs
- Methodology
 - The truncation technique seems "ad hoc" with no pure-mathematical elegance
 - The proof with martingale or ergodic theory possess that
 - However, each of the methods can be adapted to cover situations which the others cannot tackle
 - Classical truncation arguments retain great importance

Decomposition of stochastic process

Doob decomposition

- Theorem 12.11.1
 - Let $\{X_n\}_{n\in\mathbb{Z}^+}$ be an adapted process in \mathcal{L}^1
 - Then X has a Doob decomposition $X = X_0 + M + A$
 - where M is a martingale null at 0 and A is a previsible process null at 0
 - Moreover, this decomposition is unique modulo indistinguishability in the sense that

$$X = X_0 + ilde{M} + ilde{A} \implies P(M_n = ilde{M}_n, A_n = ilde{A}_n, orall n) = 1$$

- Continuous time analogue: Doob-Meyer decomposition
- Corollary 12.11.2
 - X is a submartingale iff A is an increasing process in the sense that $P(A_n \leq A_{n+1}, orall n) = 1$
 - Similarly, X is a supermartingale if and only if A is almost surely decreasing

- Proof of existence
 - If X has Doob decomposition $X=X_0+M+A$, we have

$$egin{aligned} E(X_n - X_{n-1} | \mathcal{F}_{n-1}) &= E(M_n - M_{n-1} | \mathcal{F}_{n-1}) + E(A_n - A_{n-1} | \mathcal{F}_{n-1}) \ &= 0 + (A_n - A_{n-1}) \end{aligned}$$

- Hence we can define A by $A_n = \sum_{k=1}^n E(X_k X_{k-1} | \mathcal{F}_{n-1})$ a.s.
 - A represents the sum of expected increments of X
 - M can be defined by $M_n = \sum_{k=1}^n \left[X_k E(X_k | \mathcal{F}_{k-1})
 ight]$, which adds up the surprises
- Corollary is now obvious by the defintion of ${\boldsymbol A}$
- \cdot Proof of uniqueness
 - Define $Y := M \tilde{M} = A \tilde{A}$ by rearranging the other decomposition
 - The first equality implies that Y is a martingale and $E(Y_n | \mathcal{F}_{n-1}) = Y_{n-1}$ a.s.
 - The second equality implies that Y is also previsible and $E(Y_n | \mathcal{F}_{n-1}) = Y_n$ a.s.
 - Since $Y_0 = 0$ by construction, this implies that $Y_n = 0$ a.s.
 - which also means that the decomposition is almost surely unique

The angle-brackets process $\langle M angle$

- · Let M be a martingale in \mathcal{L}^2 and null at 0
- $\cdot\,$ The the conditional form of Jensen's inequality shows that M^2 is a submartingale
 - Square function is convex as the second derivative is non-negative
 - $E(M_n^2|\mathcal{F}_{n-1}) \geq \left[E(M_n|\mathcal{F}_{n-1})
 ight]^2 = M_{n-1}^2$
- $\cdot \;$ Thus M^2 has a Doob decomposition $M^2 = N + A$
 - where N is a martingale null at 0 and A is a previsible increasing process null at 0
 - A is often written as $\langle M
 angle$ (quadratic variation in stochastic calculus)
- ' Since $E(M_n^2)=E(A_n)$, M is bounded in $\mathcal{L}^2\iff E(A_\infty)<\infty$
 - where $A_\infty:=\uparrow \lim A_n$, a.s.
 - $E(N) = E\left[E(N|\mathcal{F}_0)
 ight] = 0$ (martingale property)
- · It is important to note that $A_n-A_{n-1}=E(M_n^2-M_{n-1}^2|\mathcal{F}_{n-1})=E\left[(M_n-M_{n-1})^2|\mathcal{F}_{n-1}
 ight]$
 - As the cross term is $-E(2M_nM_{n-1}|\mathcal{F}_{n-1})=-2M_{n-1}^2$

Relating convergence of M to finiteness of $\langle M\rangle_\infty$

- Theorem 12.13.1
 - Let M be a martingale in \mathcal{L}^2 and null at 0. Let A be "a version of" $\langle M
 angle$
 - Then $A_\infty(\omega) < \infty \implies \lim_{n o \infty} M_n(\omega)$ exists
 - Suppose that M has uniformly bounded increments in that for some $K \in \mathbb{R}$,

$$|M_n(\omega) - M_{n-1}(\omega)| \leq K, orall n, orall \omega$$

- Then
$$\lim_{n o\infty}M_n(\omega)$$
 exists $\implies A_\infty(\omega)<\infty$

- Remark
 - Theorem 12.13.1 is an extension of 12.2.1
 - Doob convergence theorem + 12.2.1 with different conditions

- $\cdot \;$ Proof of $A_\infty(\omega) < \infty \; \Longrightarrow \; \lim_{n o \infty} M_n(\omega)$ exists
 - Since A is previsible, $S(k):=\infig\{n\in\mathbb{Z}^+:A_{n+1}>kig\}$ is a stopping time for every $k\in\mathbb{N}$
 - The stopped process $A^{S(k)}$ is also previsible because for $B\in\mathcal{B},n\in\mathbb{N}$

$$ig\{A_{n\wedge S(k)}\in Big\}=F_1\cup F_2$$

- where $F_1:=\cup_{r=0}^{n-1}ig\{S(k)=r;A_r\in Big\}\in\mathcal{F}_{n-1}$ (case $S(k)\leq n$)
- and $F_2:=ig\{A_n\in Big\}\capig\{S(k)\leq n-1ig\}^c\in\mathcal{F}_{n-1}$ (case S(k)>n)
- ⁻ Since $\left(M^{S(k)}
 ight)^2 A^{S(k)} = (M^2 A)^{S(k)}$ is a martingale, we have $\langle M^{S(k)}
 angle = A^{S(k)}$
 - Why this is not true by definition?
- As $A^{S(k)}$ is bounded by k, $M^{S(k)}$ is bounded in \mathcal{L}^2 by the third property in 12.2
- Thus $\lim_n M_{n \wedge S(k)}$ exists almost surely by Doob convergence theorem
- However, $ig\{A_\infty < \inftyig\} = \cup_kig\{S(k) = \inftyig\}$
- The result now follows on combining $\lim_n M_{n \wedge S(k)}$ and $ig\{A_\infty < \inftyig\}$

- $\cdot \;$ Proof of $\lim_{n o \infty} M_n(\omega)$ exists $\implies A_\infty(\omega) < \infty$
 - Suppose that $P(A_\infty=\infty, \sup_n |M_n|<\infty)>0$
 - Then for some c>0 , $P[T(c)=\infty,A_{\infty}=\infty]>0$ (since M_n is bounded)
 - where $T(c):=\infig\{r:|M_r|>cig\}$ is a stopping time
 - [–] Now $E\left[M^2_{T(c)\wedge n}-A_{T(c)\wedge n}
 ight]=0$ and $M^{T(c)}$ is bounded by c+K
 - The first one comes from decomposition and martingale property
 - The second one comes from the given condition and idea of upcrossing
 - Thus $E\left[A_{T(c)\wedge n}
 ight]\leq (c+K)^2, orall n$, which implies $E(A_\infty)<\infty$
 - Contradication arises so we should have $P(A_\infty = \infty, \sup_n |M_n| < \infty) = 0$
 - Remarks

•

- The additional assumption of uniformly bounded increments of M is needed for upcrossing
- For A, this is not necessary as the jump $A_{S(k)} A_{S(k)-1}$ becomes irrelevant due to previsibility

A trivial "Strong Law" for martingales in \mathcal{L}^2

- ' Let M be a martingale in \mathcal{L}^2 and null at 0. Let A be "a version of" $\langle M
 angle$
- Since $(1 + A)^{-1}$ is a bounded previsible process, we can define a martingale

$$W_n := \sum_{k=1}^n rac{M_k - M_{k-1}}{1 + A_k} = ig[(1 + A)^{-1} ullet Mig]_n$$

 \cdot Moreover, since $(1+A_n)$ is \mathcal{F}_{n-1} measurable,

$$egin{aligned} E\left[(W_n-W_{n-1})^2|\mathcal{F}_{n-1}
ight]&=(1+A_n)^{-2}(A_n-A_{n-1})\ &\leq(1+A_{n-1})^{-1}-(1+A_n)^{-1}, ext{ a.s.} \end{aligned}$$

- \cdot We see that $\langle W
 angle_\infty \leq 1$ so $\lim W_n$ exists a.s. by theorem 12.13.1
- ' Applying Kronecker's lemma shows that $rac{M_n}{A_n} o 0$ almost surely on $\{A_\infty = \infty\}$

Lévy's extension of the Borel-Cantelli Lemmas

- Theorem 12.15.1
 - Suppose that for $n\in\mathbb{N}, E_n\in\mathcal{F}_n$
 - Define $Z_n:=\sum_{k=1}^n I_{E_k}=$ number of $E_k(k\leq n)$ which occur
 - Also define $\xi_k := P(E_k | \mathcal{F}_{k-1})$ and $Y_n := \sum_{k=1}^n \xi_k$
 - Then we have $\{Y_\infty < \infty\} \implies \{Z_\infty < \infty\}$ almost surely

- And
$$\{Y_\infty = \infty\} \implies \{rac{Z_n}{Y_n} o 1\}$$
 almost surely

- Extension of BC1
 - Since $E(\xi_k)=P(E_k)$, it follows that if $\sum P(E_k)<\infty$ then $Y_\infty<\infty$ a.s. and BC1 follows
- Extension of BC2
 - Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of independent events associated with some triple $(\Omega,\mathcal{F},\mathbb{P})$
 - Define the natural filtration $\mathcal{F}_n=\sigma(E_1,E_2,\ldots,E_n)$
 - Then $\xi_k = P(E_k)$ almost surely by independence
 - BC2 follows from $\{Y_\infty = \infty\} \implies \{rac{Z_n}{Y_n} o 1\}$ a.s.

• Proof

- Let M be the martingale Z-Y, so that Z=M+Y is the Doob decomposition of Z. Then

$$egin{aligned} M_n &= Z_n - Y_n = \sum_{k=1}^n \left[I_{E_k} - \xi_k
ight] \ A_n &:= \langle M
angle_n = \sum_{k=1}^n E\left[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}
ight] = \sum_{k=1}^n E\left[(I_{E_k} - \xi_k)^2 | \mathcal{F}_{k-1}
ight] \ &= \sum_{k=1}^n E\left[I_{E_k} - 2I_{E_k}\xi_k + \xi_k^2 | \mathcal{F}_{k-1}
ight] = \sum_{k=1}^n \xi_k (1 - \xi_k) \leq Y_n, ext{ a.s.} \end{aligned}$$

- Note that $E(I_{E_k}|\mathcal{F}_{k-1}) = P(E_k|\mathcal{F}_{k-1}) =: \xi_k$

- If $Y_\infty < \infty$, then $A_\infty < \infty$ and $\lim M_n$ exists so that Z_∞ is finite almost surely

- If $Y_\infty=\infty$ and $A_\infty<\infty$, then $\lim M_n$ still exists and $rac{Z_n}{Y_n} o 1$ almost surely

- If $Y_\infty = \infty$ and $A_\infty = \infty$, then $rac{M_n}{A_n} = rac{M_n}{M_n^2 + N} o 0$ almost surely
- Hence, a fortiori, $rac{M_n}{Y_n} o 0$ and $rac{Z_n}{Y_n} = rac{M_n + Y_n}{Y_n} o 1$ almost surely
 - A fortiori means "from the stronger argument"

Concluding remarks

Comments

- Independence is important in the study of RVs
- Martingale may relax the independent RVs assumption to orthogonal increments
 - Pythagorean formula in \mathcal{L}^2
 - Richer probability space for copy of independent RVs
 - Doob decomposition for expected increment and surprise
- Martingale also relates convergence with finiteness
 - Doob convergence theorem
 - Truncation technique with stopping time
 - $\langle M
 angle$ from decomposition of M^2
- Martingale transform is a possible candidate for control variate in variance reduction
 - Suppose $\{X_n\}_{n\in\mathbb{N}}$ is a martingale wrt natural filtration \mathcal{F}_n
 - $Y_{n+1} := \sum_{i=1}^n g_i(X_1, \dots, X_i)(X_{i+1} X_i)$ is also a martingale wrt \mathcal{F}_n
 - Choose g with high correlation to use Y_n as control variate
 - See a trivial "Strong Law" for an example of martingale transform