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Martingales bounded in L2



Introduction

Boundedness of a martingale is important for checking convergence

A martingale  bounded in  is also bounded in 

This chapter also presents neat proofs of:

·

Yet boundedness in  can be difficult to check

Boundedness in : 

What is the difference between boundedness in  and integrability ?

- L1

- L1 E(| |) < ∞supn Mn

- L1 E(| |) < ∞, ∀nMn

· M L2 L1

Easier to check boundedness in  due to a Pythagorean formula- L2

E( ) = E( ) + E [( − ]M 2
n M 2

0 ∑
k=1

n

Mk Mk−1)2

·

Three-Series Theorem

Strong Law of Large Numbers

Lévy’s extension of the Borel-Cantelli Lemmas

-

-

-
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Martingales in : orthogonal incrementsL2

Let  be a martingale in  so that 

By martingale property, for positive integers , we have

This implies the future increment  is orthogonal to the present information , so

Hence it is possible to express  by sum of orthogonal increments:

Pythagoras’s theorem yields (since expectation of cross term vanishes)

· M = {Mn}n≥0 L2 E( ) < ∞, ∀nM 2
n

· s ≤ t ≤ u ≤ v

E( | ) = (a. s. )Mv Fu Mu

· −Mv Mu ( )L2 Fu

⟨ − , − ⟩ = 0Mt Ms Mv Mu

Future increment is also orthogonal to the past increment since - − ∈ ( )Mt Ms L2 Fu

· Mn

= + ( − )Mn M0 ∑
k=1

n

Mk Mk−1

·

E( ) = E( ) + E [( − ]M 2
n M 2

0 ∑
k=1

n

Mk Mk−1)2

4/38



Boundedness in : sum of increments squareL2

Theorem 12.1.1 (numbered by order in the section):

Proof of 

·

Let  be a martingale for which 

Then  is bounded in  if and only if 

And when this obtains,  almost surely and in 

- M ∈ , ∀nMn L2

- M L2 ∑E [( − ] < ∞Mk Mk−1)2

- →Mn M∞ L2

Note: William implicitly assumed the martingale was indexed in discrete time by using 

However I think this theorem also holds for continuous time

- k − 1
-

· E( ) < ∞ ⟺ ∑E [( − ] < ∞supn M 2
n Mk Mk−1)2

Use the Pythagorean formula-

E( ) = E( ) + E [( − ]M 2
n M 2

0 ∑
k=1

n

Mk Mk−1)2

Note:  is unbounded implies  and  are also unbounded

So the theorem is safe even if there is no  explicitly

- E( )M 2
0 E [( − ]M1 M0)2 E( )M 2

n

- E( )M 2
0
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Proof of  almost surely and in · →Mn M∞ L2

Suppose that  is bounded in 

By monotonicity of norms,  is also bounded in 

Apply Doob’s convergence theorem, we have 

The Pythagorean formula implies that 

When , Fatou’s lemma yields 

Hence , i.e. 

- M L2

- M L1

- Mn →
a.s.

M∞

- E [( − ] = E [( − ]Mn+r Mn)2 ∑n+r
k=n+1 Mk Mk−1)2

- r → ∞ E [( − ] ≤ E [( − ]M∞ Mn)2 ∑k≥n+1 Mk Mk−1)2

-
E [( − ] = 0limn M∞ Mn)2 Mn →

L2

M∞

Intuition: when , there is no more increment on RHS- n → ∞
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Sum of independent random
variables in L2



Sum of independent zero-mean RVs in L2

Theorem 12.2.1:

Notation: define

·

Suppose that  is a sequence of independent RVs with zero-mean and finite variance 

Then  converges almost surely

Further if  is bounded by some positive constant , then the reverse direction is also true

- {Xk}k∈N σ2
k

- ∑ < ∞ ⟹ ∑σ2
k Xk

- Xk K

i.e.   converges almost surely - ∑Xk ⟹ ∑ < ∞σ2
k

·

Natural filtration:  where 

Partial sum:  where 

 where 

 where 

- := σ( , , … , )Fn X1 X2 Xn := {∅, Ω}F0

- :=Mn ∑n
k=1 Xk := 0M0

- :=An ∑n
k=1 σ

2
k := 0A0

- := −Nn M 2
n An := 0N0
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Proof of  converges almost surely· ∑ < ∞ ⟹ ∑σ2
k Xk

From example in 10.4,  is a martingale

Using the Pythagorean formula,

If , then  is bounded in  and  converges almost surely by theorem 12.1.1

- M

-

E( ) = E [( − ] = E( ) = =M 2
n ∑

k=1

n

Mk Mk−1)2 ∑
k=1

n

X2
k ∑

k=1

n

σ2
k An

- ∑ < ∞σ2
k M L2 Mn
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Proof of  converges almost surely · ∑Xk ⟹ ∑ < ∞σ2
k

Since , we have, almost surely

Similarly, since  is  measurable, we can expand , almost surely

But this implies that  is a martingale (Recall )

Now let  and 

Since stopped martingale is also a martingale, 

By the further condition, we have  if 

Hence 

However, since  converges a.s., the partial sums are a.s. bounded

So it must be the case that  for some  and 

- ⊥Xk Fk−1

E [( − | ] = E[ | ] = E( ) =Mk Mk−1)2 Fk−1 X2
k Fk−1 X2

k σ2
k

- Mk−1 Fk−1 ( −Mk Mk−1)2

= E( | ) − 2 E( | ) + = E( | ) −σ2
k M 2

k Fk−1 Mk−1 Mk Fk−1 M 2
k−1 M 2

k Fk−1 M 2
k−1

- N := −Nn M 2
n An

- c ∈ (0, ∞) T := inf{r : | | > c}Mr

- E( ) = E [( ] −E( ) = 0N T
n M T

n )2 AT∧n

- | − | = | | ≤ KMT MT−1 XT T < ∞

- E( ) = E [( ] ≤ (K + c , ∀nAT∧n M T
n )2 )2

Intuition: same as upcrossing with last increment bounded by - K

- ∑Xk

- P(T = ∞) > 0 c := ∑ < ∞A∞ σ2
k

10/38



Random signs

Let  be a sequence of real numbers and  be a sequence of iid Rademacher RVs

Theorem 12.2.1 tells us that  converges a.s. 

Sketch

· { }an { }ϵn

Rademacher distribution: 

Frequently appear in statistical learning theory

- P( = ±1) = 0.5ϵn

-

· ∑ ϵnan ⟺ ∑ < ∞a2
n

And  oscillates infinitely if - ∑ ϵnan ∑ = ∞a2
n

·

Note that  and , theorem 12.2.1 will yield the first part

For the second part, my guess is since ,  will not converge

However, as  are Rademacher RVs,  will oscillate depending on the realization

- V ar( ) =ϵkak a2
k | | ≤ϵkak supn an

 because we are given - < ∞supn an ∑ = ∞a2
n

- ∑ = ∞a2
n ∑ ϵnan

- ϵn ∑ ϵnan
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Symmetrization: expanding the sample space

What if the mean of RVs is non-zero?

Lemma 12.4.1

Proof

·

·

Suppose  is a sequence of independent RVs bounded by a constant 

Then  converges a.s. implies that  converges and 

- { }Xn K ∈ [0, ∞)

- ∑Xn ∑E( )Xn ∑ V ar( ) < ∞Xn

·

If , then this reduce to theorem 12.2.1

Otherwise we need to replace each  by a “symmetrized version”  of mean 0

Let  be an exact copy of 

Define a richer probability space 

For , define

- E( ) = 0, ∀nXn

- Xn Z∗
n

- ( , , , ( : n ∈ N))Ω
~

F
~ P~ X

~
n (Ω, F , P, ( : n ∈ N))Xn

- ( , , ) := (Ω, F , P) × ( , , )Ω∗ F ∗ P∗ Ω
~

F
~ P~

- = (ω, ) ∈ Ωω∗ ω~

( ) := (ω), ( ) := ( ), ( ) := ( ) − ( )X∗
n ω∗ Xn X

~∗
n ω∗ X

~
n ω~ Z∗

n ω∗ X∗
n ω∗ X

~∗
n ω∗

Intuition:  is  lifted to the richer probability space- X∗
n Xn
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Proof (continue)·

It is clear that the combined family  is on 

Both  having the same -distribution as the -distribution of 

Now  is a zero-mean sequence of independent RVs on 

We have  and  where 

Let  with  defined similarly

Since , 

But  also converges on , which means 

As  converges a.s., is zero-mean and bounded, theorem 12.2.1 yields 

It also follows that  and  converges a.s.

- ( : n ∈ N) ∪ ( : n ∈ N)Xn X
~

n ( , , )Ω∗ F ∗ P∗

This may be proved by the uniqueness lemma in 1.6-

- ,X∗
n X

~∗
n P∗ P Xn

∘ ( = P ∘  on (R, B), etc.P∗ X∗
n)−1 X−1

n

- ( : n ∈ )Z∗
n N∗ ( , , )Ω∗ F ∗ P∗

- | ( )| ≤ 2K, ∀n, ∀Z∗
n ω∗ ω∗ V ar( ) = 2Z∗

n σ2
n := V ar( )σ2

n Xn

This is probably due to independence of original RV and its copy-

- G := {ω ∈ Ω : ∑ (ω) converges}Xn G
~

- P(G) = ( ) = 1P~ G
~

(G × ) = 1P∗ G
~

- ∑ ( )Z∗
n ω∗ G ×G

~
(∑  converges) = 1P∗ Z∗

n

- Z∗
n ∑ < ∞σ2

n

- ∑[ −E( )]Xn Xn ∑E( )Xn
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Some lemmas on real numbers



Cesàro’s lemma

Alternative version of Stolz–Cesàro theorem

Suppose that  is a sequence of strictly positive real numbers with  and 

 is a convergent sequence of real numbers with 

Then we have 

Proof: let . Choose  s.t.  whenever . Then

Since this is true for every , we have 

By a similar argument, we have  and the result follows

·

· { }bn := 0b0 ↑ ∞bn

· { }vn → ∈ Rvn v∞

· ( − ) =limn→∞
1
bn

∑n
k=1 bk bk−1 vk v∞

· ϵ > 0 N > − ϵvk v∞ k ≥ N

( − )lim inf
n→∞

1
bn

∑
k=1

n

bk bk−1 vk ≥ [ ( − ) + ( − ϵ)]lim inf
n→∞

1
bn

∑
k=1

N

bk bk−1 vk
−bn bN

bn

v∞

≥ 0 + − ϵv∞

· ϵ > 0 lim inf ≥ v∞

· lim sup ≤ v∞
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Kronecker’s lemma

Suppose that  is a sequence of strictly positive real numbers with 

 is a sequence of real numbers and define 

Then we have  converges 

Proof: let  so that  exists

Then . Thus by rearrangement

Applying Cesàro’s lemma, we have 

Alternative version:  exists and is finite 

· { }bn ↑ ∞bn

· { }xn :=sn ∑n
i=1 xi

· ∑ xn

bn
⟹ → 0sn

bn

· :=un ∑k≤n
xk

bk
:=u∞ limn→∞ un

· − =un un−1
xn

bn

= ( − ) = − ( − )sn ∑
k=1

n

bk uk uk−1 bnun ∑
k=1

n

bk bk−1 uk−1

· → − = 0sn

bn
u∞ u∞

· ∑ xn ⟹ = 0limn→∞
1
bn

∑n
k=1 bkxk

Check the little o of a weighted sum with monotonically increasing weights-
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Some neat proofs of classical
theorems



Kolmogorov’s Three-Series Theorem

Let  be a sequence of independent RVs

Then  converges a.s. iff for some (then for every) , the following 3 properties hold:

Proof of “only if” part

· { }Xn

· ∑Xn K > 0

 converges

 where

- P(| | > K) < ∞∑n Xn

- E( )∑n XK
n

- V ar( ) < ∞∑n XK
n

(ω)XK
n := { (ω)Xn

0
, | (ω)| ≤ KXn

, | (ω)| > KXn

·

Suppose that  converges a.s. and  is any constant in 

Since  a.s. whence  for only finitely many n, BC2 shows the first property holds

Since (a.s.)  for all but finitely many ,  also converges a.s.

Applying lemma 12.4.1 yields the other two properties

- ∑Xn K (0, ∞)

- → 0Xn | | > KXn

BC2: 

Contraposition: 

- ∑P(| | > K) = ∞ ⟹ P(| | > K,  i.o.) = 1Xn Xn

- P(| | > K,  i.o.) = 0 ⟹ ∑P(| | > K) < ∞Xn Xn

- =Xn XK
n n ∑XK

n

-
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Proof of “if” part·

Suppose that for some  the 3 properties hold

Then  by construction and property 1

Applying BC1 yields 

So we only need to check  converges a.s.

By property 2, we can check if  converges a.s. instead

Now note that  is a zero-mean RV with 

By property 3, the result follows from theorem 12.2.1

- K > 0
- ∑P( ≠ ) = ∑P(| | > K) < ∞Xn XK

n Xn

- P( =  for all but finitely many n) = 1Xn XK
n

- ∑XK
n

- ∑ [ −E( )]XK
n XK

n

- := −E( )Y K
n XK

n XK
n E [( ] = V ar( )Y K

n )2 XK
n

-
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A Strong Law under variance constraints

Lemma 12.8.1

Proof

·

Let  be a sequence of independent RVs with 

Then 

- { }Wn E( ) = 0, ∑ < ∞Wn
V ar( )Wn

n2

- 01
n

∑k≤n Wk →
a.s.

·

By Kronecker’s lemma, it suffices to prove that  converges

However 

So by theorem 12.2.1, the statement is proved

- ∑ Wn

n

- E ( ) = 0, ∑ V ar( ) = ∑ < ∞Wn

n

Wn

n

V ar( )Wn

n2

-
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Kolmogorov’s Truncation Lemma

Suppose that  are iid RVs with the same distribution as  where 

Define

Then

· , , …X1 X2 X E(|X|) < ∞

·

μ := E(X), := {Yn

Xn

0
, | | ≤ nXn

, | | > nXn

·

- E( ) → μYn

- P( =  eventually) = 1Yn Xn

- ∑ < ∞V ar( )Yn

n2
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Proof of · E( ) → μYn

Let

Then  and 

When , we have 

Applying dominated convergence theorem (note that  is integrable by assumption):

-

:= {Zn

X

0
, |X| ≤ n

, |X| > n

- Zn =d Yn E( ) = E( )Zn Yn

- n → ∞ → X, | | ≤ |X|Zn Zn

- X

E( ) = E( ) = E(X) = μlim
n→∞

Yn lim
n→∞

Zn
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Proof of · P( =  eventually) = 1Yn Xn

Note that

By BC1, . In other words, 

-

P( ≠ )∑
n=1

∞

Yn Xn = P(| | > n) = P(|X| > n)∑
n=1

∞

Xn ∑
n=1

∞

= E( ) = E 1∑
n=1

∞

I|X|>n

⎛
⎝ ∑

1≤n<|X|

⎞
⎠

≤ E(|X|) < ∞

- P( ≠ ,  i.o) = 0Yn Xn P( = ,  e.v.) = 1Yn Xn
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Proof of · ∑ < ∞V ar( )Yn

n2

We have

Note that, for , 

Hence  by telescoping

We have 

-

∑ ≤ ∑ = = E [|X f(|X|)]V ar( )Yn

n2

E( )Y 2
n

n2 ∑
n

E(|X ; |X| ≤ n)|2

n2 |2

where - f(z) = , 0 < z < ∞∑n≥max(1,z)
1

n2

- n ≥ 1 ≤ = 2 ( − )1
n2

2
n(n+1)

1
n

1
n+1

- f(z) ≤ 2
max(1,z)

- ∑ ≤ 2E(|X|) < ∞V ar( )Yn

n2
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Kolmogorov’s Strong Law of Large Numbers

Let  be iid RVs with . Define  and 

Then 

Proof

· , , …X1 X2 E(| |) < ∞, ∀kXk :=Sn ∑n
k=1 Xk μ := E( ), ∀kXk

· μ1
n
Sn →

a.s.

·

Define  as in Kolmogorov’s Truncation Lemma

By , it suffices to show that 

Define . Note that

The first term  by  and Cesàro’s lemma (let )

The second term  by  and lemma 12.8.1

- Yn

- P( = ,  e.v.) = 1Yn Xn μ1
n

∑n
k=1 Yk →

a.s.

- := −E( )Wk Yk Yk

= E( ) +
1
n

∑
k=1

n

Yk
1
n

∑
k=1

n

Yk
1
n

∑
k=1

n

Wk

- E( ) → μ1
n

∑n
k=1 Yk E( ) → μYn := nbn

- 01
n

∑n
k=1 Wk →

a.s.
∑ < ∞V ar( )Yn

n2
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Some remarks on SLLN

Philosophy

Methodology

·

SLLN gives a precise formulation of  as “the mean of a large number of independent
realizations of X”

From exercise E4.6, it can be shown that if , then  almost surely

Hence SLLN is the best possible result for iid RVs

- E(X)

Long run guarantee of frequentist method-

- E(|X|) = ∞ lim sup = ∞Sn

n

-

·

The truncation technique seems “ad hoc” with no pure-mathematical elegance

The proof with martingale or ergodic theory possess that

However, each of the methods can be adapted to cover situations which the others cannot tackle

Classical truncation arguments retain great importance

-

-

-

-
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Decomposition of stochastic
process



Doob decomposition

Theorem 12.11.1

Corollary 12.11.2

·

Let  be an adapted process in 

Then  has a Doob decomposition 

Moreover, this decomposition is unique modulo indistinguishability in the sense that

Continuous time analogue: Doob-Meyer decomposition

- {Xn}n∈Z+ L1

- X X = +M +AX0

where  is a martingale null at  and  is a previsible process null at - M 0 A 0
-

X = + + ⟹ P( = , = , ∀n) = 1X0 M
~

A
~

Mn M
~

n An A
~

n

-

·

 is a submartingale iff  is an increasing process in the sense that 

Similarly,  is a supermartingale if and only if  is almost surely decreasing

- X A P( ≤ , ∀n) = 1An An+1

- X A
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Proof of existence

Proof of uniqueness

·

If  has Doob decomposition , we have

Hence we can define  by  a.s.

Corollary is now obvious by the defintion of 

- X X = +M +AX0

E( − | )Xn Xn−1 Fn−1 = E( − | ) +E( − | )Mn Mn−1 Fn−1 An An−1 Fn−1

= 0 + ( − )An An−1

- A = E( − | )An ∑n
k=1 Xk Xk−1 Fn−1

 represents the sum of expected increments of 

 can be defined by , which adds up the surprises

- A X

- M = [ −E( | )]Mn ∑n
k=1 Xk Xk Fk−1

- A

·

Define  by rearranging the other decomposition

The first equality implies that  is a martingale and  a.s.

The second equality implies that  is also previsible and  a.s.

Since  by construction, this implies that  a.s.

which also means that the decomposition is almost surely unique

- Y := M − = A −M
~

A
~

- Y E( | ) =Yn Fn−1 Yn−1

- Y E( | ) =Yn Fn−1 Yn

- = 0Y0 = 0Yn

-
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The angle-brackets process ⟨M⟩

Let  be a martingale in  and null at 

The the conditional form of Jensen’s inequality shows that  is a submartingale

Thus  has a Doob decomposition 

Since ,  is bounded in 

It is important to note that 

· M L2 0
· M 2

Square function is convex as the second derivative is non-negative-

- E( | ) ≥ =M 2
n Fn−1 [E( | )]Mn Fn−1

2
M 2

n−1

· M 2 = N +AM 2

where  is a martingale null at  and  is a previsible increasing process null at 

 is often written as  (quadratic variation in stochastic calculus)

- N 0 A 0
- A ⟨M⟩

· E( ) = E( )M 2
n An M ⟺ E( ) < ∞L2 A∞

where , a.s.

 (martingale property)

- :=↑ limA∞ An

- E(N) = E [E(N | )] = 0F0

· − = E( − | ) = E [( − | ]An An−1 M 2
n M 2

n−1 Fn−1 Mn Mn−1)2 Fn−1

As the cross term is - −E(2 | ) = −2MnMn−1 Fn−1 M 2
n−1
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Relating convergence of  to finiteness ofM
⟨M⟩∞

Theorem 12.13.1

Remark

·

Let  be a martingale in  and null at . Let  be “a version of” 

Then  exists

Suppose that  has uniformly bounded increments in that for some ,

Then  exists 

- M L2 0 A ⟨M⟩

- (ω) < ∞ ⟹ (ω)A∞ limn→∞ Mn

- M K ∈ R

| (ω) − (ω)| ≤ K, ∀n, ∀ωMn Mn−1

- (ω)limn→∞ Mn ⟹ (ω) < ∞A∞

·

Theorem 12.13.1 is an extension of 12.2.1-

Doob convergence theorem + 12.2.1 with different conditions-
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Proof of  exists· (ω) < ∞ ⟹ (ω)A∞ limn→∞ Mn

Since  is previsible,  is a stopping time for every 

The stopped process  is also previsible because for 

Since  is a martingale, we have 

As  is bounded by ,  is bounded in  by the third property in 12.2

Thus  exists almost surely by Doob convergence theorem

However, 

The result now follows on combining  and 

- A S(k) := inf {n ∈ : > k}Z+ An+1 k ∈ N
- AS(k) B ∈ B,n ∈ N

{ ∈ B} = ∪An∧S(k) F1 F2

where  (case )

and  (case )

- := {S(k) = r; ∈ B} ∈F1 ∪n−1
r=0 Ar Fn−1 S(k) ≤ n

- := { ∈ B} ∩ {S(k) ≤ n− 1 ∈F2 An }c
Fn−1 S(k) > n

- − = ( −A( )M S(k) 2
AS(k) M 2 )S(k) ⟨ ⟩ =M S(k) AS(k)

Why this is not true by definition?-

- AS(k) k M S(k) L2

- limn Mn∧S(k)

- { < ∞} = {S(k) = ∞}A∞ ∪k

- limn Mn∧S(k) { < ∞}A∞
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Proof of  exists 

Remarks

· (ω)limn→∞ Mn ⟹ (ω) < ∞A∞

Suppose that 

Then for some ,  (since  is bounded)

Now  and  is bounded by 

Thus , which implies 

Contradication arises so we should have 

- P( = ∞, | | < ∞) > 0A∞ supn Mn

- c > 0 P [T (c) = ∞, = ∞] > 0A∞ Mn

where  is a stopping time- T (c) := inf {r : | | > c}Mr

- E [ − ] = 0M 2
T(c)∧n

AT(c)∧n M T(c) c +K

The first one comes from decomposition and martingale property

The second one comes from the given condition and idea of upcrossing

-

-

- E [ ] ≤ (c +K , ∀nAT(c)∧n )2 E( ) < ∞A∞

- P( = ∞, | | < ∞) = 0A∞ supn Mn

·

The additional assumption of uniformly bounded increments of  is needed for upcrossing

For , this is not necessary as the jump  becomes irrelevant due to previsibility

- M

- A −AS(k) AS(k)−1
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A trivial “Strong Law” for martingales in L2

Let  be a martingale in  and null at . Let  be “a version of” 

Since  is a bounded previsible process, we can define a martingale

Moreover, since  is  measurable,

We see that  so  exists a.s. by theorem 12.13.1

Applying Kronecker’s lemma shows that  almost surely on 

· M L2 0 A ⟨M⟩

· (1 +A)−1

:= =Wn ∑
k=1

n −Mk Mk−1

1 +Ak

[(1 +A ∙M])−1
n

· (1 + )An Fn−1

E [( − | ]Wn Wn−1)2 Fn−1 = (1 + ( − )An)−2 An An−1

≤ (1 + − (1 + ,  a.s.An−1)−1 An)−1

· ⟨W ≤ 1⟩∞ limWn

· → 0Mn

An
{ = ∞}A∞
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Lévy’s extension of the Borel-Cantelli Lemmas

Theorem 12.15.1

Extension of BC1

Extension of BC2

·

Suppose that for 

Define  number of  which occur

Also define  and 

Then we have  almost surely

And  almost surely

- n ∈ N, ∈En Fn

- := =Zn ∑n
k=1 IEk

(k ≤ n)Ek

- := P( | )ξk Ek Fk−1 :=Yn ∑n
k=1 ξk

- { < ∞} ⟹ { < ∞}Y∞ Z∞

- { = ∞} ⟹ { → 1}Y∞
Zn

Yn

·

Since , it follows that if  then  a.s. and BC1 follows- E( ) = P( )ξk Ek ∑P( ) < ∞Ek < ∞Y∞

·

Let  be a sequence of independent events associated with some triple 

Define the natural filtration 

Then  almost surely by independence

BC2 follows from  a.s.

- {En}n∈N (Ω, F , P)

- = σ( , , … , )Fn E1 E2 En

- = P( )ξk Ek

- { = ∞} ⟹ { → 1}Y∞
Zn

Yn
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Proof·

Let  be the martingale , so that  is the Doob decomposition of . Then

If , then  and  exists so that  is finite almost surely

If  and , then  still exists and  almost surely

If  and , then  almost surely

Hence, a fortiori,  and  almost surely

- M Z − Y Z = M + Y Z

Mn

:= ⟨MAn ⟩n

= − = [ − ]Zn Yn ∑
k=1

n

IEk
ξk

= E [( − | ] = E [( − | ]∑
k=1

n

Mk Mk−1)2 Fk−1 ∑
k=1

n

IEk
ξk)2 Fk−1

= E [ − 2 + | ] = (1 − ) ≤ ,  a.s.∑
k=1

n

IEk
IEk

ξk ξ2
k Fk−1 ∑

k=1

n

ξk ξk Yn

Note that - E( | ) = P( | ) =:IEk
Fk−1 Ek Fk−1 ξk

- < ∞Y∞ < ∞A∞ limMn Z∞

- = ∞Y∞ < ∞A∞ limMn → 1Zn

Yn

- = ∞Y∞ = ∞A∞ = → 0Mn

An

Mn

+NM 2
n

- → 0Mn

Yn
= → 1Zn

Yn

+Mn Yn

Yn

A fortiori means “from the stronger argument”-
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Concluding remarks



Comments

Independence is important in the study of RVs

Martingale may relax the independent RVs assumption to orthogonal increments

Martingale also relates convergence with finiteness

Martingale transform is a possible candidate for control variate in variance reduction

·

·

Pythagorean formula in 

Richer probability space for copy of independent RVs

Doob decomposition for expected increment and surprise

- L2

-

-

·

Doob convergence theorem

Truncation technique with stopping time

 from decomposition of 

-

-

- ⟨M⟩ M 2

·

Suppose  is a martingale wrt natural filtration 

 is also a martingale wrt 

Choose  with high correlation to use  as control variate

See a trivial “Strong Law” for an example of martingale transform

- {Xn}n∈N Fn

- := ( , … , )( − )Yn+1 ∑n
i=1 gi X1 Xi Xi+1 Xi Fn

- g Yn

-
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