Reading Group: Probability With Martingales Ch12

LEUNG Man Fung, Heman

Summer 2020

Martingales bounded in \mathcal{L}^{2}

Introduction

- Boundedness of a martingale is important for checking convergence
- Yet boundedness in \mathcal{L}^{1} can be difficult to check
- Boundedness in $\mathcal{L}^{1}: \sup _{n} E\left(\left|M_{n}\right|\right)<\infty$
- What is the difference between boundedness in \mathcal{L}^{1} and integrability $E\left(\left|M_{n}\right|\right)<\infty, \forall n$?
- A martingale M bounded in \mathcal{L}^{2} is also bounded in \mathcal{L}^{1}
- Easier to check boundedness in \mathcal{L}^{2} due to a Pythagorean formula

$$
E\left(M_{n}^{2}\right)=E\left(M_{0}^{2}\right)+\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]
$$

- This chapter also presents neat proofs of:
- Three-Series Theorem
- Strong Law of Large Numbers
- Lévy's extension of the Borel-Cantelli Lemmas

Martingales in \mathcal{L}^{2} : orthogonal increments

- Let $M=\left\{M_{n}\right\}_{n \geq 0}$ be a martingale in \mathcal{L}^{2} so that $E\left(M_{n}^{2}\right)<\infty, \forall n$
- By martingale property, for positive integers $s \leq t \leq u \leq v$, we have

$$
E\left(M_{v} \mid \mathcal{F}_{u}\right)=M_{u} \quad(a . s .)
$$

- This implies the future increment $M_{v}-M_{u}$ is orthogonal to the present information $\mathcal{L}^{2}\left(\mathcal{F}_{u}\right)$, so

$$
\left\langle M_{t}-M_{s}, M_{v}-M_{u}\right\rangle=0
$$

- Future increment is also orthogonal to the past increment since $M_{t}-M_{s} \in \mathcal{L}^{2}\left(\mathcal{F}_{u}\right)$
- Hence it is possible to express M_{n} by sum of orthogonal increments:

$$
M_{n}=M_{0}+\sum_{k=1}^{n}\left(M_{k}-M_{k-1}\right)
$$

- Pythagoras's theorem yields (since expectation of cross term vanishes)

$$
E\left(M_{n}^{2}\right)=E\left(M_{0}^{2}\right)+\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]
$$

Boundedness in \mathcal{L}^{2} : sum of increments square

- Theorem 12.1.1 (numbered by order in the section):
- Let M be a martingale for which $M_{n} \in \mathcal{L}^{2}, \forall n$
- Then M is bounded in \mathcal{L}^{2} if and only if $\sum E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]<\infty$
- And when this obtains, $M_{n} \rightarrow M_{\infty}$ almost surely and in \mathcal{L}^{2}
- Note: William implicitly assumed the martingale was indexed in discrete time by using $k-1$
- However I think this theorem also holds for continuous time
- Proof of $\sup _{n} E\left(M_{n}^{2}\right)<\infty \Longleftrightarrow \sum E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]<\infty$
- Use the Pythagorean formula

$$
E\left(M_{n}^{2}\right)=E\left(M_{0}^{2}\right)+\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]
$$

- Note: $E\left(M_{0}^{2}\right)$ is unbounded implies $E\left[\left(M_{1}-M_{0}\right)^{2}\right]$ and $E\left(M_{n}^{2}\right)$ are also unbounded
- So the theorem is safe even if there is no $E\left(M_{0}^{2}\right)$ explicitly
- Proof of $M_{n} \rightarrow M_{\infty}$ almost surely and in \mathcal{L}^{2}
- Suppose that M is bounded in \mathcal{L}^{2}
- By monotonicity of norms, M is also bounded in \mathcal{L}^{1}
- Apply Doob's convergence theorem, we have $M_{n} \xrightarrow{\text { a.s. }} M_{\infty}$
- The Pythagorean formula implies that $E\left[\left(M_{n+r}-M_{n}\right)^{2}\right]=\sum_{k=n+1}^{n+r} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]$
- When $r \rightarrow \infty$, Fatou's lemma yields $E\left[\left(M_{\infty}-M_{n}\right)^{2}\right] \leq \sum_{k \geq n+1} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]$
${ }^{-}$Hence $\lim _{n} E\left[\left(M_{\infty}-M_{n}\right)^{2}\right]=0$, i.e. $M_{n} \xrightarrow{\mathcal{L}^{2}} M_{\infty}$
- Intuition: when $n \rightarrow \infty$, there is no more increment on RHS

Sum of independent random variables in \mathcal{L}^{2}

Sum of independent zero-mean RVs in \mathcal{L}^{2}

- Theorem 12.2.1:
- Suppose that $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of independent RVs with zero-mean and finite variance σ_{k}^{2}
- Then $\sum \sigma_{k}^{2}<\infty \Longrightarrow \sum X_{k}$ converges almost surely
- Further if X_{k} is bounded by some positive constant K, then the reverse direction is also true
- i.e. $\sum X_{k}$ converges almost surely $\Longrightarrow \sum \sigma_{k}^{2}<\infty$
- Notation: define
- Natural filtration: $\mathcal{F}_{n}:=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ where $\mathcal{F}_{0}:=\{\varnothing, \Omega\}$
- Partial sum: $M_{n}:=\sum_{k=1}^{n} X_{k}$ where $M_{0}:=0$
- $A_{n}:=\sum_{k=1}^{n} \sigma_{k}^{2}$ where $A_{0}:=0$
- $N_{n}:=M_{n}^{2}-A_{n}$ where $N_{0}:=0$
- Proof of $\sum \sigma_{k}^{2}<\infty \Longrightarrow \sum X_{k}$ converges almost surely
- From example in 10.4, M is a martingale
- Using the Pythagorean formula,

$$
E\left(M_{n}^{2}\right)=\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2}\right]=\sum_{k=1}^{n} E\left(X_{k}^{2}\right)=\sum_{k=1}^{n} \sigma_{k}^{2}=A_{n}
$$

- If $\sum \sigma_{k}^{2}<\infty$, then M is bounded in \mathcal{L}^{2} and M_{n} converges almost surely by theorem 12.1.1
- Proof of $\sum X_{k}$ converges almost surely $\Longrightarrow \sum \sigma_{k}^{2}<\infty$
- Since $X_{k} \perp \mathcal{F}_{k-1}$, we have, almost surely

$$
E\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right]=E\left[X_{k}^{2} \mid \mathcal{F}_{k-1}\right]=E\left(X_{k}^{2}\right)=\sigma_{k}^{2}
$$

- Similarly, since M_{k-1} is \mathcal{F}_{k-1} measurable, we can expand $\left(M_{k}-M_{k-1}\right)^{2}$, almost surely

$$
\sigma_{k}^{2}=E\left(M_{k}^{2} \mid \mathcal{F}_{k-1}\right)-2 M_{k-1} E\left(M_{k} \mid \mathcal{F}_{k-1}\right)+M_{k-1}^{2}=E\left(M_{k}^{2} \mid \mathcal{F}_{k-1}\right)-M_{k-1}^{2}
$$

- But this implies that N is a martingale (Recall $N_{n}:=M_{n}^{2}-A_{n}$)
- Now let $c \in(0, \infty)$ and $T:=\inf \left\{r:\left|M_{r}\right|>c\right\}$
- Since stopped martingale is also a martingale, $E\left(N_{n}^{T}\right)=E\left[\left(M_{n}^{T}\right)^{2}\right]-E\left(A_{T \wedge n}\right)=0$
- By the further condition, we have $\left|M_{T}-M_{T-1}\right|=\left|X_{T}\right| \leq K$ if $T<\infty$
- Hence $E\left(A_{T \wedge n}\right)=E\left[\left(M_{n}^{T}\right)^{2}\right] \leq(K+c)^{2}, \forall n$
- Intuition: same as upcrossing with last increment bounded by K
- However, since $\sum X_{k}$ converges a.s., the partial sums are a.s. bounded
- So it must be the case that $P(T=\infty)>0$ for some c and $A_{\infty}:=\sum \sigma_{k}^{2}<\infty$

Random signs

- Let $\left\{a_{n}\right\}$ be a sequence of real numbers and $\left\{\epsilon_{n}\right\}$ be a sequence of iid Rademacher RVs
- Rademacher distribution: $P\left(\epsilon_{n}= \pm 1\right)=0.5$
- Frequently appear in statistical learning theory
- Theorem 12.2.1 tells us that $\sum \epsilon_{n} a_{n}$ converges a.s. $\Longleftrightarrow \sum a_{n}^{2}<\infty$
- And $\sum \epsilon_{n} a_{n}$ oscillates infinitely if $\sum a_{n}^{2}=\infty$
- Sketch
- Note that $\operatorname{Var}\left(\epsilon_{k} a_{k}\right)=a_{k}^{2}$ and $\left|\epsilon_{k} a_{k}\right| \leq \sup _{n} a_{n}$, theorem 12.2.1 will yield the first part
- $\sup _{n} a_{n}<\infty$ because we are given $\sum a_{n}^{2}=\infty$
- For the second part, my guess is since $\sum a_{n}^{2}=\infty, \sum \epsilon_{n} a_{n}$ will not converge
- However, as ϵ_{n} are Rademacher RVs, $\sum \epsilon_{n} a_{n}$ will oscillate depending on the realization

Symmetrization: expanding the sample space

- What if the mean of RVs is non-zero?
- Lemma 12.4.1
- Suppose $\left\{X_{n}\right\}$ is a sequence of independent RV s bounded by a constant $K \in[0, \infty)$
- Then $\sum X_{n}$ converges a.s. implies that $\sum E\left(X_{n}\right)$ converges and $\sum \operatorname{Var}\left(X_{n}\right)<\infty$
- Proof
- If $E\left(X_{n}\right)=0, \forall n$, then this reduce to theorem 12.2.1
- Otherwise we need to replace each X_{n} by a "symmetrized version" Z_{n}^{*} of mean 0
- Let $\left(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}},\left(\tilde{X}_{n}: n \in \mathbb{N}\right)\right)$ be an exact copy of $\left(\Omega, \mathcal{F}, \mathbb{P},\left(X_{n}: n \in \mathbb{N}\right)\right)$
- Define a richer probability space $\left(\Omega^{*}, \mathcal{F}^{*}, \mathbb{P}^{*}\right):=(\Omega, \mathcal{F}, \mathbb{P}) \times(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$
- For $\omega^{*}=(\omega, \tilde{\omega}) \in \Omega$, define

$$
X_{n}^{*}\left(\omega^{*}\right):=X_{n}(\omega), \tilde{X}_{n}^{*}\left(\omega^{*}\right):=\tilde{X}_{n}(\tilde{\omega}), Z_{n}^{*}\left(\omega^{*}\right):=X_{n}^{*}\left(\omega^{*}\right)-\tilde{X}_{n}^{*}\left(\omega^{*}\right)
$$

- Intuition: X_{n}^{*} is X_{n} lifted to the richer probability space
- Proof (continue)
- It is clear that the combined family $\left(X_{n}: n \in \mathbb{N}\right) \cup\left(\tilde{X}_{n}: n \in \mathbb{N}\right)$ is on $\left(\Omega^{*}, \mathcal{F}^{*}, \mathbb{P}^{*}\right)$
- This may be proved by the uniqueness lemma in 1.6
- Both $X_{n}^{*}, \tilde{X}_{n}^{*}$ having the same \mathbb{P}^{*}-distribution as the \mathbb{P}-distribution of X_{n}

$$
\mathbb{P}^{*} \circ\left(X_{n}^{*}\right)^{-1}=\mathbb{P} \circ X_{n}^{-1} \text { on }(\mathbb{R}, \mathcal{B}), \text { etc. }
$$

- $\operatorname{Now}\left(Z_{n}^{*}: n \in \mathbb{N}^{*}\right)$ is a zero-mean sequence of independent RVs on $\left(\Omega^{*}, \mathcal{F}^{*}, \mathbb{P}^{*}\right)$
- We have $\left|Z_{n}^{*}\left(\omega^{*}\right)\right| \leq 2 K, \forall n, \forall \omega^{*}$ and $\operatorname{Var}\left(Z_{n}^{*}\right)=2 \sigma_{n}^{2}$ where $\sigma_{n}^{2}:=\operatorname{Var}\left(X_{n}\right)$
- This is probably due to independence of original RV and its copy
- Let $G:=\left\{\omega \in \Omega: \sum X_{n}(\omega)\right.$ converges $\}$ with \tilde{G} defined similarly
- Since $\mathbb{P}(G)=\tilde{\mathbb{P}}(\tilde{G})=1, \mathbb{P}^{*}(G \times \tilde{G})=1$
- But $\sum Z_{n}^{*}\left(\omega^{*}\right)$ also converges on $G \times \tilde{G}$, which means $\mathbb{P}^{*}\left(\sum Z_{n}^{*}\right.$ converges $)=1$
- As Z_{n}^{*} converges a.s., is zero-mean and bounded, theorem 12.2 .1 yields $\sum \sigma_{n}^{2}<\infty$
- It also follows that $\sum\left[X_{n}-E\left(X_{n}\right)\right]$ and $\sum E\left(X_{n}\right)$ converges a.s.

Some lemmas on real numbers

Cesàro's lemma

- Alternative version of Stolz-Cesàro theorem
- Suppose that $\left\{b_{n}\right\}$ is a sequence of strictly positive real numbers with $b_{0}:=0$ and $b_{n} \uparrow \infty$
- $\left\{v_{n}\right\}$ is a convergent sequence of real numbers with $v_{n} \rightarrow v_{\infty} \in \mathbb{R}$
- Then we have $\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right) v_{k}=v_{\infty}$
- Proof: let $\epsilon>0$. Choose N s.t. $v_{k}>v_{\infty}-\epsilon$ whenever $k \geq N$. Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right) v_{k} & \geq \liminf _{n \rightarrow \infty}\left[\frac{1}{b_{n}} \sum_{k=1}^{N}\left(b_{k}-b_{k-1}\right) v_{k}+\frac{b_{n}-b_{N}}{b_{n}}\left(v_{\infty}-\epsilon\right)\right] \\
& \geq 0+v_{\infty}-\epsilon
\end{aligned}
$$

- Since this is true for every $\epsilon>0$, we have $\liminf \geq v_{\infty}$
- By a similar argument, we have $\lim \sup \leq v_{\infty}$ and the result follows

Kronecker's lemma

- Suppose that $\left\{b_{n}\right\}$ is a sequence of strictly positive real numbers with $b_{n} \uparrow \infty$
- $\left\{x_{n}\right\}$ is a sequence of real numbers and define $s_{n}:=\sum_{i=1}^{n} x_{i}$
- Then we have $\sum \frac{x_{n}}{b_{n}}$ converges $\Longrightarrow \frac{s_{n}}{b_{n}} \rightarrow 0$
- Proof: let $u_{n}:=\sum_{k \leq n} \frac{x_{k}}{b_{k}}$ so that $u_{\infty}:=\lim _{n \rightarrow \infty} u_{n}$ exists
- Then $u_{n}-u_{n-1}=\frac{x_{n}}{b_{n}}$. Thus by rearrangement

$$
s_{n}=\sum_{k=1}^{n} b_{k}\left(u_{k}-u_{k-1}\right)=b_{n} u_{n}-\sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right) u_{k-1}
$$

- Applying Cesàro's lemma, we have $\frac{s_{n}}{b_{n}} \rightarrow u_{\infty}-u_{\infty}=0$
- Alternative version: $\sum x_{n}$ exists and is finite $\Longrightarrow \lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n} b_{k} x_{k}=0$
- Check the little o of a weighted sum with monotonically increasing weights

Some neat proofs of classical theorems

Kolmogorov's Three-Series Theorem

- Let $\left\{X_{n}\right\}$ be a sequence of independent RVs
- Then $\sum X_{n}$ converges a.s. iff for some (then for every) $K>0$, the following 3 properties hold:
- $\sum_{n} P\left(\left|X_{n}\right|>K\right)<\infty$
- $\sum_{n} E\left(X_{n}^{K}\right)$ converges
- $\sum_{n} \operatorname{Var}\left(X_{n}^{K}\right)<\infty$ where

$$
X_{n}^{K}(\omega):= \begin{cases}X_{n}(\omega) & ,\left|X_{n}(\omega)\right| \leq K \\ 0 & ,\left|X_{n}(\omega)\right|>K\end{cases}
$$

- Proof of "only if" part
- Suppose that $\sum X_{n}$ converges a.s. and K is any constant in $(0, \infty)$
- Since $X_{n} \rightarrow 0$ a.s. whence $\left|X_{n}\right|>K$ for only finitely many $\mathrm{n}, \mathrm{BC2}$ shows the first property holds
- BC2: $\sum P\left(\left|X_{n}\right|>K\right)=\infty \Longrightarrow P\left(\left|X_{n}\right|>K\right.$, i.o. $)=1$
- Contraposition: $P\left(\left|X_{n}\right|>K\right.$, i.o. $)=0 \Longrightarrow \sum P\left(\left|X_{n}\right|>K\right)<\infty$
- Since (a.s.) $X_{n}=X_{n}^{K}$ for all but finitely many $n, \sum X_{n}^{K}$ also converges a.s.
- Applying lemma 12.4.1 yields the other two properties
- Proof of "if" part
- Suppose that for some $K>0$ the 3 properties hold
- Then $\sum P\left(X_{n} \neq X_{n}^{K}\right)=\sum P\left(\left|X_{n}\right|>K\right)<\infty$ by construction and property 1
- Applying BC1 yields $P\left(X_{n}=X_{n}^{K}\right.$ for all but finitely many $\left.n\right)=1$
- So we only need to check $\sum X_{n}^{K}$ converges a.s.
- By property 2 , we can check if $\sum\left[X_{n}^{K}-E\left(X_{n}^{K}\right)\right]$ converges a.s. instead
- Now note that $Y_{n}^{K}:=X_{n}^{K}-E\left(X_{n}^{K}\right)$ is a zero-mean RV with $E\left[\left(Y_{n}^{K}\right)^{2}\right]=\operatorname{Var}\left(X_{n}^{K}\right)$
- By property 3, the result follows from theorem 12.2.1

A Strong Law under variance constraints

- Lemma 12.8.1
- Let $\left\{W_{n}\right\}$ be a sequence of independent RVs with $E\left(W_{n}\right)=0, \sum \frac{\operatorname{Var}\left(W_{n}\right)}{n^{2}}<\infty$
- Then $\frac{1}{n} \sum_{k \leq n} W_{k} \xrightarrow{\text { a.s. }} 0$
- Proof
- By Kronecker's lemma, it suffices to prove that $\sum \frac{W_{n}}{n}$ converges
- However $E\left(\frac{W_{n}}{n}\right)=0, \sum \operatorname{Var}\left(\frac{W_{n}}{n}\right)=\sum \frac{\operatorname{Var}\left(W_{n}\right)}{n^{2}}<\infty$
- So by theorem 12.2.1, the statement is proved

Kolmogorov's Truncation Lemma

- Suppose that X_{1}, X_{2}, \ldots are iid RVs with the same distribution as X where $E(|X|)<\infty$
- Define

$$
\mu:=E(X), Y_{n}:= \begin{cases}X_{n} & ,\left|X_{n}\right| \leq n \\ 0 & ,\left|X_{n}\right|>n\end{cases}
$$

- Then
- $E\left(Y_{n}\right) \rightarrow \mu$
- $P\left(Y_{n}=X_{n}\right.$ eventually $)=1$
- $\sum \frac{\operatorname{Var}\left(Y_{n}\right)}{n^{2}}<\infty$
- Proof of $E\left(Y_{n}\right) \rightarrow \mu$
- Let

$$
Z_{n}:= \begin{cases}X & ,|X| \leq n \\ 0 & ,|X|>n\end{cases}
$$

- Then $Z_{n} \stackrel{d}{=} Y_{n}$ and $E\left(Z_{n}\right)=E\left(Y_{n}\right)$
- When $n \rightarrow \infty$, we have $Z_{n} \rightarrow X,\left|Z_{n}\right| \leq|X|$
- Applying dominated convergence theorem (note that X is integrable by assumption):

$$
\lim _{n \rightarrow \infty} E\left(Y_{n}\right)=\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=E(X)=\mu
$$

- Proof of $P\left(Y_{n}=X_{n}\right.$ eventually $)=1$
- Note that

$$
\begin{aligned}
\sum_{n=1}^{\infty} P\left(Y_{n} \neq X_{n}\right) & =\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>n\right)=\sum_{n=1}^{\infty} P(|X|>n) \\
& =E\left(\sum_{n=1}^{\infty} I_{|X|>n}\right)=E\left(\sum_{1 \leq n<|X|} 1\right) \\
& \leq E(|X|)<\infty
\end{aligned}
$$

- By BC1, $P\left(Y_{n} \neq X_{n}\right.$, i.o $)=0$. In other words, $P\left(Y_{n}=X_{n}\right.$, e.v. $)=1$

Proof of $\sum \frac{\operatorname{Var}\left(Y_{n}\right)}{n^{2}}<\infty$

- We have

$$
\sum \frac{\operatorname{Var}\left(Y_{n}\right)}{n^{2}} \leq \sum \frac{E\left(Y_{n}^{2}\right)}{n^{2}}=\sum_{n} \frac{E\left(|X|^{2} ;|X| \leq n\right)}{n^{2}}=E\left[|X|^{2} f(|X|)\right]
$$

- where $f(z)=\sum_{n \geq \max (1, z) \frac{1}{n^{2}}, 0<z<\infty}$
- Note that, for $n \geq 1, \frac{1}{n^{2}} \leq \frac{2}{n(n+1)}=2\left(\frac{1}{n}-\frac{1}{n+1}\right)$
- Hence $f(z) \leq \frac{2}{\max (1, z)}$ by telescoping
- We have $\sum \frac{\operatorname{Var}\left(Y_{n}\right)}{n^{2}} \leq 2 E(|X|)<\infty$

Kolmogorov's Strong Law of Large Numbers

- Let X_{1}, X_{2}, \ldots be iid RVs with $E\left(\left|X_{k}\right|\right)<\infty, \forall k$. Define $S_{n}:=\sum_{k=1}^{n} X_{k}$ and $\mu:=E\left(X_{k}\right), \forall k$
- Then $\frac{1}{n} S_{n} \xrightarrow{\text { a.s. }} \mu$
- Proof
- Define Y_{n} as in Kolmogorov's Truncation Lemma
- By $P\left(Y_{n}=X_{n}\right.$, e.v. $)=1$, it suffices to show that $\frac{1}{n} \sum_{k=1}^{n} Y_{k} \xrightarrow{\text { a.s. }} \mu$
- Define $W_{k}:=Y_{k}-E\left(Y_{k}\right)$. Note that

$$
\frac{1}{n} \sum_{k=1}^{n} Y_{k}=\frac{1}{n} \sum_{k=1}^{n} E\left(Y_{k}\right)+\frac{1}{n} \sum_{k=1}^{n} W_{k}
$$

- The first term $\frac{1}{n} \sum_{k=1}^{n} E\left(Y_{k}\right) \rightarrow \mu$ by $E\left(Y_{n}\right) \rightarrow \mu$ and Cesàro's lemma (let $b_{n}:=n$)
- The second term $\frac{1}{n} \sum_{k=1}^{n} W_{k} \xrightarrow{\text { a.s. }} 0$ by $\sum \frac{\operatorname{Var}\left(Y_{n}\right)}{n^{2}}<\infty$ and lemma 12.8.1

Some remarks on SLLN

- Philosophy
- SLLN gives a precise formulation of $E(X)$ as "the mean of a large number of independent realizations of $X^{\prime \prime}$
- Long run guarantee of frequentist method
- From exercise E4.6, it can be shown that if $E(|X|)=\infty$, then $\lim \sup \frac{S_{n}}{n}=\infty$ almost surely
- Hence SLLN is the best possible result for iid RVs
- Methodology
- The truncation technique seems "ad hoc" with no pure-mathematical elegance
- The proof with martingale or ergodic theory possess that
- However, each of the methods can be adapted to cover situations which the others cannot tackle
- Classical truncation arguments retain great importance

Decomposition of stochastic process

Doob decomposition

- Theorem 12.11.1
- Let $\left\{X_{n}\right\}_{n \in \mathbb{Z}^{+}}$be an adapted process in \mathcal{L}^{1}
- Then X has a Doob decomposition $X=X_{0}+M+A$
- where M is a martingale null at 0 and A is a previsible process null at 0
- Moreover, this decomposition is unique modulo indistinguishability in the sense that

$$
X=X_{0}+\tilde{M}+\tilde{A} \Longrightarrow P\left(M_{n}=\tilde{M}_{n}, A_{n}=\tilde{A}_{n}, \forall n\right)=1
$$

- Continuous time analogue: Doob-Meyer decomposition
- Corollary 12.11.2
- X is a submartingale iff A is an increasing process in the sense that $P\left(A_{n} \leq A_{n+1}, \forall n\right)=1$
- Similarly, X is a supermartingale if and only if A is almost surely decreasing
- Proof of existence
- If X has Doob decomposition $X=X_{0}+M+A$, we have

$$
\begin{aligned}
E\left(X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right) & =E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)+E\left(A_{n}-A_{n-1} \mid \mathcal{F}_{n-1}\right) \\
& =0+\left(A_{n}-A_{n-1}\right)
\end{aligned}
$$

- Hence we can define A by $A_{n}=\sum_{k=1}^{n} E\left(X_{k}-X_{k-1} \mid \mathcal{F}_{n-1}\right)$ a.s.
- A represents the sum of expected increments of X
- M can be defined by $M_{n}=\sum_{k=1}^{n}\left[X_{k}-E\left(X_{k} \mid \mathcal{F}_{k-1}\right)\right]$, which adds up the surprises
- Corollary is now obvious by the defintion of A
- Proof of uniqueness
- Define $Y:=M-\tilde{M}=A-\tilde{A}$ by rearranging the other decomposition
- The first equality implies that Y is a martingale and $E\left(Y_{n} \mid \mathcal{F}_{n-1}\right)=Y_{n-1}$ a.s.
- The second equality implies that Y is also previsible and $E\left(Y_{n} \mid \mathcal{F}_{n-1}\right)=Y_{n}$ a.s.
- Since $Y_{0}=0$ by construction, this implies that $Y_{n}=0$ a.s.
- which also means that the decomposition is almost surely unique

The angle-brackets process $\langle M\rangle$

- Let M be a martingale in \mathcal{L}^{2} and null at 0
- The the conditional form of Jensen's inequality shows that M^{2} is a submartingale
- Square function is convex as the second derivative is non-negative
- $E\left(M_{n}^{2} \mid \mathcal{F}_{n-1}\right) \geq\left[E\left(M_{n} \mid \mathcal{F}_{n-1}\right)\right]^{2}=M_{n-1}^{2}$
- Thus M^{2} has a Doob decomposition $M^{2}=N+A$
- where N is a martingale null at 0 and A is a previsible increasing process null at 0
- A is often written as $\langle M\rangle$ (quadratic variation in stochastic calculus)
- Since $E\left(M_{n}^{2}\right)=E\left(A_{n}\right), M$ is bounded in $\mathcal{L}^{2} \Longleftrightarrow E\left(A_{\infty}\right)<\infty$
- where $A_{\infty}:=\uparrow \lim A_{n}$, a.s.
- $E(N)=E\left[E\left(N \mid \mathcal{F}_{0}\right)\right]=0$ (martingale property)
- It is important to note that $A_{n}-A_{n-1}=E\left(M_{n}^{2}-M_{n-1}^{2} \mid \mathcal{F}_{n-1}\right)=E\left[\left(M_{n}-M_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right]$
- As the cross term is $-E\left(2 M_{n} M_{n-1} \mid \mathcal{F}_{n-1}\right)=-2 M_{n-1}^{2}$

Relating convergence of M to finiteness of $\langle M\rangle_{\infty}$

- Theorem 12.13.1
- Let M be a martingale in \mathcal{L}^{2} and null at 0 . Let A be "a version of" $\langle M\rangle$
- Then $A_{\infty}(\omega)<\infty \Longrightarrow \lim _{n \rightarrow \infty} M_{n}(\omega)$ exists
- Suppose that M has uniformly bounded increments in that for some $K \in \mathbb{R}$,

$$
\left|M_{n}(\omega)-M_{n-1}(\omega)\right| \leq K, \forall n, \forall \omega
$$

- Then $\lim _{n \rightarrow \infty} M_{n}(\omega)$ exists $\Longrightarrow A_{\infty}(\omega)<\infty$
- Remark
- Theorem 12.13.1 is an extension of 12.2.1
- Doob convergence theorem + 12.2.1 with different conditions
- Proof of $A_{\infty}(\omega)<\infty \Longrightarrow \lim _{n \rightarrow \infty} M_{n}(\omega)$ exists
- Since A is previsible, $S(k):=\inf \left\{n \in \mathbb{Z}^{+}: A_{n+1}>k\right\}$ is a stopping time for every $k \in \mathbb{N}$
- The stopped process $A^{S(k)}$ is also previsible because for $B \in \mathcal{B}, n \in \mathbb{N}$

$$
\left\{A_{n \wedge S(k)} \in B\right\}=F_{1} \cup F_{2}
$$

- where $F_{1}:=\cup_{r=0}^{n-1}\left\{S(k)=r ; A_{r} \in B\right\} \in \mathcal{F}_{n-1}($ case $S(k) \leq n)$
- and $F_{2}:=\left\{A_{n} \in B\right\} \cap\{S(k) \leq n-1\}^{c} \in \mathcal{F}_{n-1}($ case $S(k)>n)$
- Since $\left(M^{S(k)}\right)^{2}-A^{S(k)}=\left(M^{2}-A\right)^{S(k)}$ is a martingale, we have $\left\langle M^{S(k)}\right\rangle=A^{S(k)}$
- Why this is not true by definition?
- As $A^{S(k)}$ is bounded by $k, M^{S(k)}$ is bounded in \mathcal{L}^{2} by the third property in 12.2
- Thus $\lim _{n} M_{n \wedge S(k)}$ exists almost surely by Doob convergence theorem
- However, $\left\{A_{\infty}<\infty\right\}=\cup_{k}\{S(k)=\infty\}$
- The result now follows on combining $\lim _{n} M_{n \wedge S(k)}$ and $\left\{A_{\infty}<\infty\right\}$
- Proof of $\lim _{n \rightarrow \infty} M_{n}(\omega)$ exists $\Longrightarrow A_{\infty}(\omega)<\infty$
- Suppose that $P\left(A_{\infty}=\infty, \sup _{n}\left|M_{n}\right|<\infty\right)>0$
- Then for some $c>0, P\left[T(c)=\infty, A_{\infty}=\infty\right]>0$ (since M_{n} is bounded)
- where $T(c):=\inf \left\{r:\left|M_{r}\right|>c\right\}$ is a stopping time
- Now $E\left[M_{T(c) \wedge n}^{2}-A_{T(c) \wedge n}\right]=0$ and $M^{T(c)}$ is bounded by $c+K$
- The first one comes from decomposition and martingale property
- The second one comes from the given condition and idea of upcrossing
- Thus $E\left[A_{T(c) \wedge n}\right] \leq(c+K)^{2}, \forall n$, which implies $E\left(A_{\infty}\right)<\infty$
- Contradication arises so we should have $P\left(A_{\infty}=\infty, \sup _{n}\left|M_{n}\right|<\infty\right)=0$
- Remarks
- The additional assumption of uniformly bounded increments of M is needed for upcrossing
- For A, this is not necessary as the jump $A_{S(k)}-A_{S(k)-1}$ becomes irrelevant due to previsibility

A trivial "Strong Law" for martingales in \mathcal{L}^{2}

- Let M be a martingale in \mathcal{L}^{2} and null at 0 . Let A be "a version of" $\langle M\rangle$
- Since $(1+A)^{-1}$ is a bounded previsible process, we can define a martingale

$$
W_{n}:=\sum_{k=1}^{n} \frac{M_{k}-M_{k-1}}{1+A_{k}}=\left[(1+A)^{-1} \bullet M\right]_{n}
$$

- Moreover, since $\left(1+A_{n}\right)$ is \mathcal{F}_{n-1} measurable,

$$
\begin{aligned}
E\left[\left(W_{n}-W_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right] & =\left(1+A_{n}\right)^{-2}\left(A_{n}-A_{n-1}\right) \\
& \leq\left(1+A_{n-1}\right)^{-1}-\left(1+A_{n}\right)^{-1}, \text { a.s. }
\end{aligned}
$$

- We see that $\langle W\rangle_{\infty} \leq 1$ so $\lim W_{n}$ exists a.s. by theorem 12.13.1
- Applying Kronecker's lemma shows that $\frac{M_{n}}{A_{n}} \rightarrow 0$ almost surely on $\left\{A_{\infty}=\infty\right\}$

Lévy's extension of the Borel-Cantelli Lemmas

- Theorem 12.15.1
- Suppose that for $n \in \mathbb{N}, E_{n} \in \mathcal{F}_{n}$
- Define $Z_{n}:=\sum_{k=1}^{n} I_{E_{k}}=$ number of $E_{k}(k \leq n)$ which occur
- Also define $\xi_{k}:=P\left(E_{k} \mid \mathcal{F}_{k-1}\right)$ and $Y_{n}:=\sum_{k=1}^{n} \xi_{k}$
- Then we have $\left\{Y_{\infty}<\infty\right\} \Longrightarrow\left\{Z_{\infty}<\infty\right\}$ almost surely
- And $\left\{Y_{\infty}=\infty\right\} \Longrightarrow\left\{\frac{Z_{n}}{Y_{n}} \rightarrow 1\right\}$ almost surely
- Extension of BC1
- Since $E\left(\xi_{k}\right)=P\left(E_{k}\right)$, it follows that if $\sum P\left(E_{k}\right)<\infty$ then $Y_{\infty}<\infty$ a.s. and BC1 follows
- Extension of BC2
- Let $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of independent events associated with some triple $(\Omega, \mathcal{F}, \mathbb{P})$
- Define the natural filtration $\mathcal{F}_{n}=\sigma\left(E_{1}, E_{2}, \ldots, E_{n}\right)$
- Then $\xi_{k}=P\left(E_{k}\right)$ almost surely by independence
- BC2 follows from $\left\{Y_{\infty}=\infty\right\} \Longrightarrow\left\{\frac{Z_{n}}{Y_{n}} \rightarrow 1\right\}$ a.s.
- Proof
- Let M be the martingale $Z-Y$, so that $Z=M+Y$ is the Doob decomposition of Z. Then

$$
\begin{aligned}
M_{n} & =Z_{n}-Y_{n}=\sum_{k=1}^{n}\left[I_{E_{k}}-\xi_{k}\right] \\
A_{n}:=\langle M\rangle_{n} & =\sum_{k=1}^{n} E\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right]=\sum_{k=1}^{n} E\left[\left(I_{E_{k}}-\xi_{k}\right)^{2} \mid \mathcal{F}_{k-1}\right] \\
& =\sum_{k=1}^{n} E\left[I_{E_{k}}-2 I_{E_{k}} \xi_{k}+\xi_{k}^{2} \mid \mathcal{F}_{k-1}\right]=\sum_{k=1}^{n} \xi_{k}\left(1-\xi_{k}\right) \leq Y_{n}, \text { a.s. }
\end{aligned}
$$

- Note that $E\left(I_{E_{k}} \mid \mathcal{F}_{k-1}\right)=P\left(E_{k} \mid \mathcal{F}_{k-1}\right)=: \xi_{k}$
- If $Y_{\infty}<\infty$, then $A_{\infty}<\infty$ and $\lim M_{n}$ exists so that Z_{∞} is finite almost surely
- If $Y_{\infty}=\infty$ and $A_{\infty}<\infty$, then $\lim M_{n}$ still exists and $\frac{Z_{n}}{Y_{n}} \rightarrow 1$ almost surely
- If $Y_{\infty}=\infty$ and $A_{\infty}=\infty$, then $\frac{M_{n}}{A_{n}}=\frac{M_{n}}{M_{n}^{2}+N} \rightarrow 0$ almost surely
- Hence, a fortiori, $\frac{M_{n}}{Y_{n}} \rightarrow 0$ and $\frac{Z_{n}}{Y_{n}}=\frac{M_{n}+Y_{n}}{Y_{n}} \rightarrow 1$ almost surely
- A fortiori means "from the stronger argument"

Concluding remarks

Comments

- Independence is important in the study of RVs
- Martingale may relax the independent RVs assumption to orthogonal increments
- Pythagorean formula in \mathcal{L}^{2}
- Richer probability space for copy of independent RVs
- Doob decomposition for expected increment and surprise
- Martingale also relates convergence with finiteness
- Doob convergence theorem
- Truncation technique with stopping time
- $\langle M\rangle$ from decomposition of M^{2}
- Martingale transform is a possible candidate for control variate in variance reduction
- Suppose $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a martingale wrt natural filtration \mathcal{F}_{n}
- $Y_{n+1}:=\sum_{i=1}^{n} g_{i}\left(X_{1}, \ldots, X_{i}\right)\left(X_{i+1}-X_{i}\right)$ is also a martingale wrt \mathcal{F}_{n}
- Choose g with high correlation to use Y_{n} as control variate
- See a trivial "Strong Law" for an example of martingale transform

